Search results for "Mathematics - Rings and Algebras"
showing 10 items of 28 documents
Lie Algebras Generated by Extremal Elements
1999
We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.
Computing with Rational Symmetric Functions and Applications to Invariant Theory and PI-algebras
2012
The research of the first named author was partially supported by INdAM. The research of the second, third, and fourth named authors was partially supported by Grant for Bilateral Scientific Cooperation between Bulgaria and Ukraine. The research of the fifth named author was partially supported by NSF Grant DMS-1016086.
Multiplicative loops of 2-dimensional topological quasifields
2015
We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.
Fully representable and*-semisimple topological partial*-algebras
2012
We continue our study of topological partial *-algebras, focusing our attention to *-semisimple partial *-algebras, that is, those that possess a {multiplication core} and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the scope of characterizing a *-semisimple partial *-algebra. Finally we describe various notions of bounded elements in such a partial *-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome …
A General Algorithm to Calculate the Inverse Principal $p$-th Root of Symmetric Positive Definite Matrices
2019
We address the general mathematical problem of computing the inverse p-th root of a given matrix in an efficient way. A new method to construct iteration functions that allow calculating arbitrary p-th roots and their inverses of symmetric positive definite matrices is presented. We show that the order of convergence is at least quadratic and that adaptively adjusting a parameter q always leads to an even faster convergence. In this way, a better performance than with previously known iteration schemes is achieved. The efficiency of the iterative functions is demonstrated for various matrices with different densities, condition numbers and spectral radii.
Bounded elements of C*-inductive locally convex spaces
2013
The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.
Multialternating graded polynomials and growth of polynomial identities
2012
Let G be a finite group and A a finite dimensional G-graded algebra over a field of characteristic zero. When A is simple as a G-graded algebra, by mean of Regev central polynomials we construct multialternating graded polynomials of arbitrarily large degree non vanishing on A. As a consequence we compute the exponential rate of growth of the sequence of graded codimensions of an arbitrary G-graded algebra satisfying an ordinary polynomial identity. In particular we show it is an integer. The result was proviously known in case G is abelian.
COMPLEX STRUCTURES ON INDECOMPOSABLE 6-DIMENSIONAL NILPOTENT REAL LIE ALGEBRAS
2007
We compute all complex structures on indecomposable 6-dimensional real Lie algebras and their equivalence classes. We also give for each of them a global holomorphic chart on the connected simply connected Lie group associated to the real Lie algebra and write down the multiplication in that chart.
k-Leibniz algebras from lower order ones: from Lie triple to Lie l-ple systems
2013
Two types of higher order Lie l-ple systems are introduced in this paper. They are defined by brackets with l > 3 arguments satisfying certain conditions, and generalize the well-known Lie triple systems. One of the generalizations uses a construction that allows us to associate a (2n - 3)-Leibniz algebra pound with a metric n-Leibniz algebra () pound over tilde by using a 2(n - 1)-linear Kasymov trace form for () pound over tilde. Some specific types of k-Leibniz algebras, relevant in the construction, are introduced as well. Both higher order Lie l-ple generalizations reduce to the standard Lie triple systems for l = 3.
Cohomology of Filippov algebras and an analogue of Whitehead's lemma
2009
We show that two cohomological properties of semisimple Lie algebras also hold for Filippov (n-Lie) algebras, namely, that semisimple n-Lie algebras do not admit non-trivial central extensions and that they are rigid i.e., cannot be deformed in Gerstenhaber sense. This result is the analogue of Whitehead's Lemma for Filippov algebras. A few comments about the n-Leibniz algebras case are made at the end.